Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-se...

متن کامل

Size-Dependent Chemical and Magnetic Ordering in L10-FePt Nanoparticles

FePt nanoparticles have great application potential in advanced magnetic materials such as ultrahigh-density recording media and high-performance permanent magnets. The key for applications is the very high uniaxial magnetocrystalline anisotropy of the L10-FePt phase, which is based on crystalline ordering of the face-centered tetragonal (fct) structure, described by the chemical-ordering param...

متن کامل

Influence of particle size on Magnetic behavior of nickel oxide nanoparticles

The influence of the particle size on magnetic behaviors of nickeloxide nanoparticles (NiO NPs) was reported. NiO NPs with a uniform particlesize were synthesized via a facile sol-gel method, and various sizes of NiO NPs(11, to 49 nm) were achieved by calcination at various temperatures (400, to 700°C). X-ray diffraction (XRD) analysis revealed that increasing the calcinationtemperature increas...

متن کامل

Size-regulated group separation of CoFe2O4 nanoparticles using centrifuge and their magnetic resonance contrast properties

Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Molecular Sciences

سال: 2015

ISSN: 1422-0067

DOI: 10.3390/ijms160820001